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Deconjugative esterification of optically active 2-(4-phenyl-
cyclohexylidene)acetic acid (1) and 2-(4-fert-butylcyclohexyl-
idene)acetic acid (4) with an axis of chirality afforded the
corresponding B,y-unsaturated esters 2 and 6, each with a center
of chirality. Additionally, a plausible reaction mechanism for the
intramolecular chirality transfer is described.

Our group has been interested in the stereoselective synthesis
of carbon—carbon double bonds with an axis of chirality by
Horner—Wadsworth-Emmons (HWE) reactions of 4-substituted-
cyclohexanones and 2-substituted-1,3-dioxan-5-ones.! Recently,
we reported the deconjugative esterification and amidation of 2-
cyclohexylideneacetic acids.? In connection with the deconjugative
esterification reaction, we investigated the stereocontrolled con-
version of optically active 2-cyclohexylideneacetic acids with
axis-to-center chirality transfer.’

At the outset, we examine the deconjugative esterification
of optically active 2-(4-phenylcyclohexylidene)acetic acid (1)
through B,y-unsaturated acyl pyridinium intermediate as depicted
in Scheme 1.2* Treatment of carboxylic acid 1 (98% ee)* with
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide = hydrochloride
(EDC-HCl) and 4-(pyrrolidin-1-yl)pyridine (PPY) in CH,Cl,
followed by the addition of excess amounts of i-PrOH led to
rac-f,y-unsaturated ester 2 and rac-o,B-unsaturated ester 3 with a
2:3 ratio of 93:7, and in 76% yield. Racemization of both esters 2
and 3 was also observed in a similar reaction with N,N-dimethyl-4-
aminopyridine (DMAP) instead of PPY. Needless to say, it was
anticipated that the equilibrium between acyl pyridinium inter-
mediates, f,y-unsaturated acylpyridinium and o,B-unsaturated
acylpyridinium, caused the racemization of both esters 2 and 3.22

On the other hand, we investigated the deconjugative
esterification of o,B-unsaturated carboxylic acid 1 through -
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Scheme 1. Deconjugative esterification of 2-cyclohexylideneacetic
acid 1 through an acyl pyridinium intermediate.
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unsaturated ketene intermediate and found it to work well
(Table 1) The esterification of 1 (98% ee) with i-PrOH in the
presence of 1,3-dicyclohexylcarbodiimide (DCC), Me;N-HCI, and
Me,NEt in CH,Cl, gave B,y-unsaturated ester 2 in 87% ee with a
2:3 ratio of 97:3, and in 79% yield (Table 1, Entry 2). Further, the
efficacy of axis-to-center chirality transfer in the esterification of 1
(98% ee) was somewhat improved when 1,3-diisopropylcarbodi-
imide (DIC) was employed instead of DCC. In this reaction, ,)-
unsaturated ester 2 was obtained in 90% ee with a 2:3 ratio of 96:4
(74% yield) (Table 1, Entry 3).° In addition, no racemization of
isolated product 2 (90% ee) was observed under the reaction
conditions C in the absence of carboxylic acid 1.°

Based on these results, we further examined the deconjugative
esterification of «,B-unsaturated carboxylic acid 1 through o, 8-
unsaturated ketene intermediate under microwave irradiation
according to the previously optimized procedure.”® However,
enantiomeric excesses of the resulting fB,y-unsaturated ester 2 by
the reaction with DCC or DIC were moderate (Table 1, Entries 4
and 5). A lower reaction temperature was found to lead to an
increase in enantiomeric excess values of 2 to some degree, but the
yield was considerably decreased (Table 1, Entry 6).

The ee values of 2 and 3 were determined by HPLC analysis
on a chiral stationary phase (CSP). Unfortunately, the absolute
configurations of 1, 2, and 3 were not determined. Even so, the
absolute configuration of 2-(4-tert-butylcyclohexylidene)acetic

Table 1. Deconjugative esterification of ¢, B-unsaturated carboxylic
acids 1
DCC or DIC (1.5 mol equiv)

Ph\OV MegN-HCI (1.5 mol equiv)  Conditions
X C02H CH,Cl, CH,Cl,
1 (98% ee) rt,1h
Ph Ph
CO,i-Pr X COsi-Pr
2 3
Entry Conditions® Yield/%® 2:3° Ee/% of 2¢ Ee/% of 3¢
1 A 71 90:10 90 n.d.
2 B 79 97:3 87 n.d.
3 C 74 96:4 90 98
4 D 79 98:2 67 n.d.
5 E 81 97:3 65 n.d.
6 F 44 97:3 82 n.d.

2A: DCC, 1t, 48h, 1/Et;N/i-PrOH (1:7.5:5), B: DCC, rt, 48h,
1/Me,NEt/i-PrOH (1:7.5:5), C: DIC, rt, 48 h, 1/Me,NEt/i-PrOH
(1:7.5:5), D: DCC, MW (90°C), 10min, 1/Me,NEt/i-PrOH
(1:3:1.5), E: DIC, MW (90°C), 10min, 1/Me,NEt/i-PrOH
(1:3:1.5), F: DIC, MW (50°C), 30min, 1/Me,NEt/i-PrOH
(1:3:1.5). PIsolated yields. “Determined by 'HNMR (400 or
500 MHz, benzene-ds) analysis of the crude esters. YDetermined
by HPLC analysis (CHIRALCEL OD-H, n-hexane/2-propaol).
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Scheme 2. Deconjugative esterification of 2-cyclohexylideneacetic
acid (aS)-4.
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Scheme 3. Deconjugative esterification of 2-cyclohexylideneacetic
acids 1 and 4.

acid (4) (90% ee)’ was determined to be aS by chemical
conversion to the known compound 5 [87% ee, [Ot]ll)9 +56.4
(c 1.00, EtOH), 1it®® (aS)-5 (23% ee), []5 +14.5 (c 0.98, EtOH)]
and by comparison of the specific rotation with the value in the
literature as shown in Scheme 2. Then, deconjugative esterification
of «,B-unsaturated carboxylic acid (aS)-4 (90% ee) afforded
B,y-unsaturated ester (S)-6 (76% ee) via intramolecular chirality
transfer.8 The absolute configuration of 6 [76% ee, [@] —49.0
(¢ 1.00, CHCl3), lit® (R)-6 (46% ee), []5 +26.4 (¢ 1.06, CHCl3)]
was similarly determined to be S by comparing the specific
rotation with the literature value. The ee value of 7 was not
determined.

These results show that the reaction outcome may be
rationalized by regioselective deprotonation of one of the y-
protons at the cis position relative to the carbonyl group of the
O-acyl urea 8 for axis-to-center chirality transfer to lead to the
chiral o,B-unsaturated ketene 9 (Scheme 3). The actual mecha-
nism underlying this deconjugative esterification remains obscure,
but the reaction mechanism underlying the deconjugative ester-
ification in the presence of EDC-HCI and PPY (Scheme 1) should
be different from those in the presence of DIC, MesN-HCI, and
Me,NEt (Table 1 and Scheme 2). The in situ formation of «, 8-
unsaturated ketene intermediate is plausible in the latter reaction.’
By comparison with the latter reaction, deconjugative esterification
of 1 (98% ece) and (aS)-4 (82% ee) utilizing an ordinary ketene
synthesis'® from the corresponding acid chlorides and Et;N
exhibited moderate levels of chirality transfer.!! The enantiomeric
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excess of the resultant B,y-unsaturated esters 2 and 6 were 66% ee
and 64% ee, respectively.

Despite our present lack of success in deconjugative ester-
ification with a complete transfer of chirality, we believe that the
procedure provides a novel methodology in asymmetric synthesis
associated with asymmetric HWE reactions. Our efforts to improve
the efficacy of the axis-to-center chirality transfer of 2-cyclo-
hexylideneacetic acids are continuing, and the results will be
reported elsewhere.

This work was supported in part by a Grant for the Regional
Innovation Cluster Program (Global Type) promoted by MEXT.
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